Compilers are often critical components in various development toolchains that boosts developer productivity. A compiler is normally used as a monolithic black box that consumes a high-level source program and produces a semantically-equivalent low-level one. It is still structured inside though; what flows between internal layers are called intermediate representations (IRs).
IRs are critical to compilers. Like there are many compilers, there are also many IRs in use. I’m fortunate to have direct experience with three major schools of IRs or infrastructures thus far—LLVM IR, SPIR-V, MLIR, particularly extensively for the last two, where I both joined development in an early stage. So I’d like to write a series of blog posts to log down my understanding of compilers and IRs. Hopefully it could be beneficial to others.
Nowadays GPUs are utilized for both graphics rendering and general-purpose compute (GPGPU). For the latter, CUDA is the indisputable leading solution. Though, with so many other GPU vendors, the quest for a GPGPU standard never stops. OpenCL was a great attempt and is used widely; but still it falls short on many aspects. Given the success of Vulkan in graphics and it being both a graphics and compute API, one would wonder whether it can actually be the next-generation GPGPU standard. I certainly believe so; but the road is not full of roses.