cuda

Previous blog posts overviewed the MLIR dialect hierarchy for kernel code generation (CodeGen) and zoomed in on the Linalg and Vector dialects among them. Now I will switch to discuss the runtime side a bit, in order to provide a holistic view of MLIR-based machine learning (ML) compilers. This one touches the foundation and basics, including the target landscape, runtime requirements and designs to meet thereof.
Nowadays GPUs are utilized for both graphics rendering and general-purpose compute (GPGPU). For the latter, CUDA is the indisputable leading solution. Though, with so many other GPU vendors, the quest for a GPGPU standard never stops. OpenCL was a great attempt and is used widely; but still it falls short on many aspects. Given the success of Vulkan in graphics and it being both a graphics and compute API, one would wonder whether it can actually be the next-generation GPGPU standard. I certainly believe so; but the road is not full of roses.